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ABSTRACT

A variety of approaches have been proposed previously to interpo-
late head-related transfer functions (HRTFs). However, relatively
little attention has been given to the way a suitable set of HRTFs is
chosen for interpolation and to the calculation of the interpolation
weights. This paper presents an efficient and robust way to select
a minimal set of HRTFs and to calculate appropriate weights for
interpolation. The proposed method is based on grouping HRTF
measurement points into non-overlapping triangles on the surface
of a sphere by calculating the convex hull. The resulting Delau-
nay triangulation maximises minimum angles. For interpolation,
the HRTF triangle that is intersected by the desired sound source
vector is selected. The selection is based on a point-in-triangle
test than can be performed using just 9 multiplications and 6 addi-
tions per triangle. A further improvement of the selection process
is achieved by sorting the HRTF triangles according to their dis-
tance from the sound source vector prior to performing the point-
in-triangle tests. The HRTFs of the selected triangle are interpo-
lated using weights derived from vector-base amplitude panning,
with appropriate normalisation. The proposed method is compared
to state-of-the-art methods. It is shown to be robust with respect to
irregularities in the HRTF measurement grid and to be well-suited
for rendering moving virtual sources.

1. INTRODUCTION

The head-related transfer function (HRTF) describes the filtering
that sound travelling from a sound source to the ears of a listener
undergoes due to shadowing and reflections from the listener’s
torso, head, and pinnae. The HRTF changes as a function of az-
imuth and elevation of the sound source and thus provides cues for
the human auditory system to determine the source direction. To
render a virtual source emanating sound from a certain direction,
the directional cues corresponding to the desired azimuth and ele-
vation need to be encoded in the sound. The encoding can be done
by filtering the sound with an HRTF corresponding to the desired
direction. Some databases of measured HRTFs available online in-
clude the MIT KEMAR database [1], the CIPIC database [2], and
the LISTEN database [3]. These databases contain a large number
of measurement points covering a range of azimuth and elevation
angles. To display a virtual sound source at a direction for which
no measured HRTF is available, an appropriate HRTF needs to
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be estimated from available HRTF measurements. A common ap-
proach to obtain an HRTF estimate for an arbitrary azimuth and
elevation angle from an HRTF measurement database is to inter-
polate a subset of the measured HRTFs. Although various ways
to interpolate HRTF subsets have been proposed previously, rela-
tively little attention has been given to the way in which the HRTF
subset is selected.

Here, a robust and efficient way to select a minimal subset
of an HRTF measurement database for interpolation is proposed.
The subset is minimal in the sense that it contains the minimum
number of measured HRTFs that allow rendering a moving vir-
tual source without abrupt spectral changes. The interpolation of
a minimal subset of HRTFs can be performed as a linear combi-
nation of the selected HRTF subset with appropriate weights, in
the time or frequency domain. Here, a simple method to calcu-
late interpolation weights is proposed and compared to methods
proposed previously.

2. PRIOR WORK

2.1. Subset selection

Approaches to HRTF interpolation have been proposed that take
into account all or a large number of measurement points, for ex-
ample using spherical splines [4] or via rational state-space inter-
polation [5]. However, while these approaches potentially yield
more accurate HRTF estimates than methods that use only a small
subset of HRTF measurements for interpolation, they come at an
increased computational cost. The computational complexity of
the HRTF interpolation algorithm becomes an issue when render-
ing moving virtual sources, especially if multiple sources and/or
room reflections are to be rendered simultaneously, or if the ren-
dering is done on a device with reduced computational power, for
example a mobile phone.

To minimise computational complexity, approaches have been
proposed to select a minimal subset of HRTF measurements for
interpolation. The reasoning behind such approaches is that an
HRTF estimate for a desired, non-measured direction can be ob-
tained by interpolating HRTFs measured at directions close to the
desired direction. Figure 1 illustrates various HRTF subset selec-
tion approaches for a given source direction. One subset selection
approach is to select the measurement points nearest to the desired
source direction. Proposed methods include finding the 3 nearest
measurement points [6, 7] and 4 nearest measurement points [8, 4]
(see fig. 1, N3 and N4). Distance measures proposed to determine
the nearest neighbouring measurement points include the great-
circle distance [4] and the Euclidean distance [7]. Another subset
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Figure 1: Subset selection approaches: nearest-3 (N3), nearest-
4 (N4), enclosing triangle (T) and enclosing rectangle (R). The
dots denote measurement points in the MIT KEMAR HRTF
database [1], the cross denotes the desired source direction.

selection approach is to select the nearest measurement points that
enclose the desired source direction. Proposed approaches include
finding a rectangle [9, 10] or triangle [11, 12] enclosing the desired
direction (see fig. 1, R and T).

2.2. Calculation of interpolation weights

A straightforward way to interpolate a set of HRTF measurements
is to calculate a weighted average of the selected HRTFs. Bilin-
ear interpolation can be used to calculate weights to interpolate
measured HRTFs linearly with respect to azimuth and elevation.
Bilinear interpolation has been proposed for interpolating 3 mea-
surement points [11], and 4 measurement points arranged in a reg-
ular grid [9]. Geometric approaches calculate weights based on
the distance of the desired direction from each measurement point.
For the interpolation of 3 or more measurement points, weights
can be calculated from the inverse of the Euclidean distance [7] or
the great-circle distance (i.e., the distance along the sphere) [4, 13].
The interpolation of measured HRTFs can be interpreted as a su-
perposition of the signals of virtual loudspeakers positioned at the
measurement points [12]. With this interpretation, the interpola-
tion weights are equivalent to the panning gains of these virtual
loudspeakers. Panning gains for arbitrary loudspeaker setups can
be calculated using vector-base amplitude panning (VBAP) [14].

3. PROPOSED METHOD

3.1. Vector formulation

An HRTF database contains HRTFs measured at various directions
with respect to the measured test subject. The goal of HRTF inter-
polation is to obtain an HRTF estimate corresponding to a desired
source position. HRTFs can be considered distance-independent
for distances greater than 1 m [15]. Therefore, assuming the de-
sired source is further than 1 m away, the measured directions and
the desired source position can be represented as unit vectors, de-
noted as measurement vectors hi and source vector s, respectively.
Given this vector formulation, the proposed methods for subset se-

Figure 2: 100 random HRTF measurement points on the unit
sphere and the triangulation of their convex hull.

lection and HRTF interpolation assume that an HRTF estimate for
the desired source direction s can be obtained as a linear combi-
nation of 3 HRTF measurements at h1, h2, and h3 that form a
curved triangle on the unit sphere and enclose s. This formulation
is analogous to the vector-base formulation in VBAP [14].

3.2. Algorithm initialisation

Processing time requirements can be tight when rendering moving
virtual sound sources. Therefore, it is a good idea to offload as
much processing as possible to the initialisation of the algorithm.
Goal of the subset selection algorithm is to find a measurement
triplet {h1,h2,h3} that encloses the desired source direction s.
To obtain a good HRTF estimate, h1, h2, and h3 should be close to
s in terms of their distance along the sphere. Furthermore, it makes
sense to have a consistent mapping of a source direction s and the
measurement points used for interpolation, i.e., there should be a
unique representation of an HRTF estimate at s as the linear com-
bination of measurement points hi. To meet these requirements,
the measurement points are grouped into triplets that form non-
overlapping triangles on the unit sphere. Efficient algorithms exist
to perform this triangulation. With all measurement points lying
on the surface of a sphere, the triangulation can be done by cal-
culating the convex hull of the measurement points. This yields
a Delaunay triangulation [16]. The Delaunay triangulation max-
imises the minimum angle of the generated triangles, which is a
desirable property for interpolation [16, 14]. Figure 2 illustrates
the Delaunay triangulation for 100 random measurement points.
As can be seen, the triangulation deals well with grid irregulari-
ties.

The result of the triangulation is stored in memory as a list of
measurement point triplets. For a desired source direction s, the
linear combination of a measurement point triplet {h1,h2,h3} is
given as:

s = g1h1 + g2h2 + g3h3, (1)

where g1, g2, and g3 are scalar weights. With g = [g1 g2 g3]
T

and H = [h1 h2 h3], the weights are obtained as:

g = H−1s. (2)

To minimise the computational effort of evaluating eq. (2) at run-
time, the inverse H−1 can be calculated for every measurement
triplet during initialisation and stored in memory. This reduces
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the operation count required for evaluating eq. (2) at runtime to 9
multiplications and 6 additions per measurement triplet.

3.3. HRTF subset selection

The criterion for selecting a measurement triplet {h1,h2,h3} for
interpolation is that the weights calculated via eq. (2) are positive:

g1, g2, g3 ≥ 0. (3)

This is equivalent to s lying inside the curved triangle formed by
{h1,h2,h3} on the unit sphere. At runtime, the subset selection
algorithm iterates through all measurement triplets until a suitable
triplet is found. The performance of this “brute-force” implemen-
tation for various publicly available HRTF databases is illustrated
in fig. 3.

Next, an improvement to the subset selection algorithm is pro-
posed. Instead of iterating through the triplets in an arbitrary or-
der, the triplets are sorted according to their distance from the de-
sired source direction s, so that the selection algorithm first iterates
through triplets close to s. The triplet distance is calculated as the
distance between s and the centre of the triangle formed by the
measurement triplet. A straightforward way to express the cen-
tre c of a (curved) triangle is to take the arithmetic mean of the
triangle vertices {h1,h2,h3}:

c = (h1 + h2 + h3)/3. (4)

The distance d along the sphere between s and the triangle is then
given as:

d = arccos(s • c), (5)

where • is the inner product of s and c. However, for the pur-
pose of ordering the measurement triangles with respect to their
distance to s, it is sufficient to calculate the inner product d̂ip:

d̂ip = s • c. (6)

Sorting all triangles by descending d̂ip is equivalent to sorting
them by ascending distance d. As c can be calculated via eq. (4)
during initialisation and stored in memory, evaluating eq. (6) at
runtime reduces to 3 multiplications and 2 additions per measure-
ment triplet (whereas the brute-force approach evaluates eq. (2)
which requires 9 multiplications and 6 additions per triplet). Ef-
ficient algorithms exist for sorting the triangles according to dis-
tance, given the list L1,N = {d̂ip,1, . . . , d̂ip,N}, where N is the
number of measurement triplets. Assuming that a suitable trian-
gle for interpolation is among the K triangles closest to s, but not
necessarily the closest, it is not necessary to sort the whole list. In-
stead, quick selection can be used to partition L1,N into 2 unsorted
lists: A1,K, containing the K closest triangles, and BK+1,N, con-
taining the remaining triangles [17]. With K set to 0.02 N, A1,K

consists of the closest 2 percent of all triangles. To speed up the
quick selection, K is set to an admissible range rather than a fixed
value [17]. Here, K is set to 0.02 N± 0.004 N.

To find a suitable triangle for interpolation, the subset selec-
tion algorithm starts by iterating over A1,K. If no suitable triangle
is found among the closest triangles, the selection algorithm con-
tinues to iterate over the remaining triangles BK+1,N. Figure 3 il-
lustrates the effect of first iterating over the closest triangles on the
total processing time of the subset selection algorithm (fig. 3, dark
grey dots), for 1000 random source directions s and three differ-
ent HRTF databases. The brute-force implementation (fig. 3, light

100 200 300 400 500 600

0

5

10

[µ
s](a)

50 100 150 200 250 300 350

0

2

4

[µ
s](b)

500 1000 1500 2000

0

10

20

30

Triangle index j
[µ

s](c)

Figure 3: Processing times of brute-force iteration (light grey
dots) and iteration over the K closest triangles after quick se-
lection (dark grey dots), for 1000 random source directions, us-
ing the HRTF databases: (a) MIT KEMAR [1]; (b) LISTEN [3];
(c) CIPIC [2]. Each dot denotes the time required to find an
HRTF measurement triplet j suitable for interpolation for a ran-
dom source direction, averaged over 500 repetitions, on a com-
puter with a 2GHz quad-core processor.

grey dots) iterates over all triangles regardless of their distance to
s, until a suitable one is found. As expected, the processing time
of the brute-force implementation increases linearly with the iter-
ation index j of the selected triangle. Therefore, the processing
time of the brute-force subset selection algorithm is dependent on
the desired source direction s.

By using quick selection to find the K closest triangles and it-
erating over those first, the processing time of the subset selection
algorithm is approximately constant regardless of the triangle in-
dex (see fig. 3, dark grey dots), that is, a suitable triangle is found
within a certain time span for any source direction s. Constant
processing time is a desirable property for spatial sound rendering
algorithms as it allows for a constant rendering update rate when
rendering for example moving sources.

3.4. Calculation of interpolation weights

The weights g, calculated via eq. (2) to check whether a measure-
ment triplet {h1,h2,h3} is suitable for interpolation, can directly
be used as interpolation weights, after normalisation:

gi,int =
gi∑3
j=1 gj

⇒
3∑

i=1

gi,int = 1 (7)

where gi,int is the interpolation weight of measurement point hi.
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Figure 4: Dots denote measurement points in the MIT KEMAR
HRTF database [1]. Source directions in grey areas are not en-
closed by their respective 3 nearest measurement points.

If the desired source s lies on an edge of a measurement tri-
angle, the vertex opposite to that edge has a weight of zero, thus
effectively only the two measurement points forming the edge are
selected for interpolation. Similarly, if s lies on a vertex, the other
two vertices of the same triangle have zero weights, and only the
HRTF measured at s is selected.

4. EXPERIMENTS

To evaluate the proposed approaches for HRTF subset selection
and calculation of interpolation weights, experiments are carried
out using both modelled and measured HRTFs.

4.1. HRTF subset selection

Even though the proposed subset selection approach is very effi-
cient computationally (see fig. 3), an even faster method is to sim-
ply select the 3 nearest measurement points for interpolation [6, 7].
However, a drawback of this approach is that the 3 points near-
est to the desired source direction s do not necessarily enclose s,
and may for example form a line rather than a triangle (see N3
in fig. 1). In the case of the nearest measurement points forming
a line, it is questionable whether using all 3 points for interpola-
tion would yield a better HRTF estimate than using for example
only the 2 nearest measurement points. Figure 4 shows large ar-
eas for which source directions are not enclosed by their respective
3 nearest measurement points (with respect to their distance along
the sphere) in the MIT KEMAR HRTF database [1]. This is mostly
due to the nearest measurement points lying on a line with constant
elevation, and the desired source direction s lying above or below
that line (see section 4.2 for a discussion on the consequences).

Given the drawbacks of the nearest-3 selection algorithm, the
additional computational cost of the subset selection algorithm
proposed here, incurred for testing whether a selected measure-
ment triplet encloses the desired source direction, seems justified.
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Figure 5: RMSE for interpolating a simple head-shadowing model
sampled at regular azimuth and elevation intervals (dark dots) us-
ing (a) normalised VBAP weighting (proposed here); (b) inverse
distance weighting; (c) bilinear interpolation of 3 measurement
points; (d) bilinear interpolation of 4 measurement points.

4.2. Interpolation of modelled HRTF data

Using a simple model for the angle-dependent effect of head shad-
owing on sound reaching the ears [18], the performance of the pro-
posed method for calculating interpolation weights is compared to
methods proposed in the literature. The model is implemented as
an IIR filter:

Hhs(z, ϕ) =

(
c
a
+ α(ϕ)fs

)
+
(
c
a
− α(ϕ)fs

)
z−1(

c
a
+ fs

)
+
(
c
a
− fs

)
z−1

, (8)

with

α(ϕ) = 1.05 + 0.95 cos

(
180

150

(
ϕ+

π

2

))
, (9)

where c denotes the speed of sound, a the head radius, ϕ the az-
imuth angle, and fs the sampling rate. Note that ϕ is given in
interaural-polar coordinates [19]. In interaural-polar coordinates,
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Hhs is independent of elevation. Given azimuth φ and elevation δ
in standard vertical-polar coordinates, ϕ is obtained as

ϕ = arcsin (sin(φ) cos(δ)) . (10)

Using the head-shadowing model given by eq. (8), approxi-
mate HRTFs are obtained at regular intervals of azimuth and ele-
vation. Four different methods are used to calculate interpolation
weights and to interpolate those approximate HRTFs:

a) the normalised VBAP weights proposed here;

b) inverse distance weighting [7];

c) bilinear interpolation of 3 measurement points [11];

d) bilinear interpolation of 4 measurement points [9].

The methods are compared in terms of the root-mean-square error
(RMSE) between the interpolated and the modelled HRTF magni-
tude response. The purpose of the comparison is to illustrate qual-
itative, rather than quantitative, differences between the compared
interpolation approaches.

Figure 5 illustrates the RMSE of the four methods for a range
of azimuth and elevation angles. As expected, all algorithms are
virtually error-free at measurement points. Moving away from
measurement points, the interpolation error increases. The inter-
polation error of the bilinear interpolation of 3 measurement points
exhibits slight discontinuities (see fig. 5c), caused by interpolation
discontinuities. The discontinuities coincide with shared edges of
measurement triangles: As the source position crosses a shared
edge between two measurement triangles, the measurement points
used for interpolation switch abruptly from one triangle to the
other, causing a discontinuity in the interpolated HRTF. Discon-
tinuities are undesirable when rendering moving sound sources, as
they could potentially cause audible discontinuities in the sound.
The inverse distance weighting shows more severe discontinuities
(see fig. 5b). These are partially caused by the fact that the nearest
points used for interpolation may form a line, rather than a trian-
gle enclosing the desired source direction (see fig. 4). The other
reason why inverse distance weighting produces discontinuities in
the interpolation is the same as for the bilinear interpolation of 3
measurement points: The transition between one selected subset
of measurement points to another is discontinuous. The interpola-
tion of the normalised VBAP weighting proposed here (see fig. 5a)
and of bilinear interpolation of 4 measurement points (see fig. 5d)
is nearly identical for the tested range of azimuth and elevation
angles. Both methods interpolate smoothly in azimuth and eleva-
tion, without discontinuities, which makes them good candidates
for rendering moving sound sources. The reason these two meth-
ods do not produce discontinuities is that for a source moving close
to an edge of a selected measurement subset, the weights of ver-
tices not lying on that edge gradually diminish, until they become
zero for a source lying on the edge. This allows for a smooth tran-
sition from one selected measurement subset, across an edge, to
another subset. The advantage of the proposed VBAP weighting
over the bilinear interpolation of 4 measurement points is that it
selects at most 3 measurement points for interpolation and does
not depend on a regular measurement grid (see fig. 2). As the
performance of the two methods is very similar otherwise and the
bilinear interpolation is not well defined in the presence of grid
irregularities, bilinear interpolation is dropped from the following
experiments.
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Figure 6: HRTF interpolation for a moving source; (a) the source
path, discretised at 100 steps; (b) spectrogram of HRTF interpo-
lation using the proposed methods for subset selection and calcu-
lation of interpolation weights; (c) spectrogram of HRTF interpo-
lation by inverse distance weighting of the nearest 3 HRTFs.

4.3. Rendering a moving virtual source

To illustrate the effect of interpolation discontinuities, the render-
ing of a moving sound source is simulated using the MIT KE-
MAR HRTF database [1]. After subset selection and interpolation
weight calculation, the interpolation is performed on the magni-
tude of the measured HRTFs in the frequency domain, as proposed
by Zotkin et al. [7]. The phase of the interpolated HRTF can be de-
rived from a spherical head model [7] and is not considered here.

Figure 6 shows spectrograms of the interpolated HRTFs for a
source moving along a circular path (fig. 6a). The proposed meth-
ods for subset selection and calculation of interpolation weights
produce smooth HRTF estimates (fig. 6b). Interpolation using the
nearest 3 measurement points and inverse distance weighting pro-
duces discontinuities visible in the spectrogram (fig. 6c). Informal
listening tests indicate that these discontinuities may be audible.

4.4. Interpolation of measured HRTF data

To compare the overall performance of the proposed method to
other approaches, interpolation is performed on the MIT KEMAR
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Table 1: Average RMSE for interpolating the measured left- and
right-ear HRTFs in (a) the MIT KEMAR HRTF database [1],
(b) the LISTEN HRTF database [3], and (c) the CIPIC HRTF
database [2]. The minimum RMSE for each row is in bold.

proposed bilinear 3 nearest-3 nearest-2
[dB] [dB] [dB] [dB]

(a) left 1.809 1.811 1.916 1.811
right 2.015 2.017 2.142 2.017

(b) left 3.480 3.517 3.432 3.557
right 3.195 3.228 3.248 3.291

(c) left 2.195 2.201 2.185 2.201
right 2.217 2.222 2.226 2.222

HRTF database [1], by removing one measurement point at a time
and comparing the measured HRTF to the HRTF estimated via
interpolation for the same point. The methods compared are:

a) the method for subset selection and interpolation weight
calculation proposed here;

b) bilinear interpolation of 3 measurement points;

c) inverse distance weighting of the 3 nearest measurement
points;

d) inverse distance weighting of the 2 nearest measurement
points (for comparison).

The interpolation is performed on the magnitude spectra, as pro-
posed by Zotkin et al. [7]. Table 1 summarises the results in terms
of the RMSE averaged over all measurement points. For the MIT
KEMAR database (table 1a), all methods have nearly identical per-
formance, except for the nearest-3 interpolation which performs
slightly worse. This is due to the measurement grid structure of the
MIT KEMAR database, which causes the nearest-3 subset selec-
tion to perform badly (see figs. 4 and 5). The algorithm is actually
outperformed by interpolation using just the 2 nearest measure-
ment points. As hypothesised, there is no advantage in using 3
measurement points for interpolation, if all 3 points lie on a line
(see section 4.1). For the LISTEN database (table 1b), the RMSE
of all tested algorithms is similar. The RMSE is higher than for
the MIT KEMAR database, as the measurement grid of the LIS-
TEN database is less dense. The results for the CIPIC database are
analogous (table 1c). The improved performance of the nearest-3
interpolation for the LISTEN and CIPIC database indicates that for
these databases the 3 nearest measurement points are more likely
to form a triangle enclosing the point to be estimated. The method
proposed here performs well for all 3 tested HRTF databases.

Overall, for the HRTF databases used in this comparison, the
differences between the tested methods are small. This is partly
due to the way the RMSE is calculated (by removing one measure-
ment point at a time) and the fact that the tested databases exhibit
highly regular measurement grids (with the exception of some ir-
regularities in the MIT KEMAR and LISTEN databases at extreme
elevation values, where the measurement grid is sparser). This is
also the reason for the good performance of the inverse-distance
interpolation of the nearest 2 measurement points: After remov-
ing one measurement point from the HRTF database, the near-

est measurement points usually lie to the left and right of the re-
moved point, at equal distance and elevation. For this special case,
all algorithms except the nearest-3 interpolation potentially select
those two neighbouring points and calculate the same interpolation
weights, thus resulting in an identical interpolation. Obviously,
this is not true for any point that does not lie precisely half-way
between 2 measurement points at equal elevation. Interpolating
at positions that do not coincide exactly with measurement points,
or using an HRTF database with a more irregular grid structure,
would produce larger differences with respect to the measurement
points selected and the weights calculated for interpolation, and
thus the resulting HRTF interpolation.

5. SUMMARY AND CONCLUSION

A method for selecting a subset of an HRTF measurement database
for HRTF interpolation and calculating interpolation weights was
presented. The main steps of the algorithm are:

1. Initialisation: group HRTF measurement points into non-
overlapping triangles by calculating their convex hull and
pre-calculate the inverse and centres of the triangles;

2. source update: iterate through the measurement triplets (af-
ter optional sorting according to distance) until a suitable
triplet for interpolation is found;

3. interpolation: calculate interpolation weights via vector-
base amplitude panning (VBAP) and normalisation.

After selecting an HRTF subset and calculating appropriate inter-
polation weights, the actual interpolation can be performed as a
linear combination of the time- or frequency-domain responses.
The proposed algorithm proves to be computationally efficient and
robust with respect to irregular measurement grids. The measure-
ment triangles obtained by calculating the convex hull of the mea-
surement points represent a Delaunay triangulation, which max-
imises the minimum angle of all triangles, a property advantageous
for interpolation [16, 14].

The interpolation weights calculated via VBAP and normali-
sation change smoothly with azimuth and elevation, allowing for
smooth interpolation of moving sources without interpolation dis-
continuities. The accuracy of the proposed method for interpolat-
ing an HRTF database is comparable to or better than other state-
of-the-art methods, while not suffering from interpolation discon-
tinuities for moving sources.
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